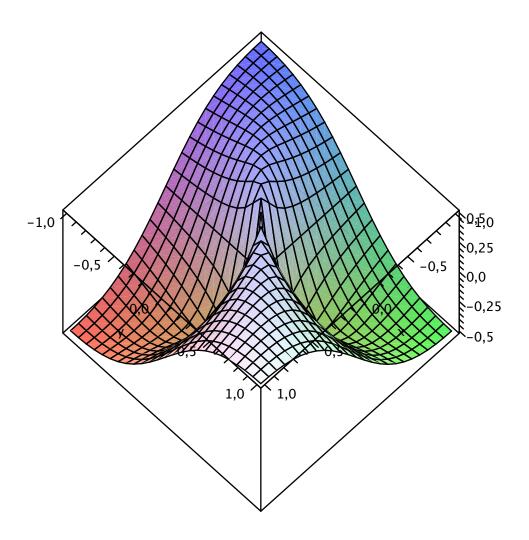
T4: Limites, continuité



 $f:(x,y)\mapsto xy/(x^2+y^2)$, non continue en (0,0)

Jusqu'au II.5., c'est un chapitre assez simple : on remplace |.| sur R ou sur C par ||.|| sur un espace vectoriel normé. Ce qui est beaucoup plus nouveau, c'est la continuité des applications linéaires.

I Limites

I.1 Définition

Soit f une application définie sur une partie A d'un espace vectoriel normé E, à valeurs dans un espace vectoriel normé F, et soit a un élément de E adhérent à A (on résumera ces hypothèses en $f:A\subset E\longrightarrow F$, $a\in \overline{A}$). Soit b un élément de F. On dit que f a pour limite b en a, et on note $\lim_a f=b$, ou $\lim_{x\to a} f(x)=b$ lorsque:

$$\forall \epsilon > 0 \quad \exists \eta > 0 \quad \forall x \in A \qquad \|x - a\|_E \le \eta \implies \|f(x) - b\|_F \le \epsilon.$$

Remarque 1 (unicité de la limite): S'il y a une limite, elle est unique.

Remarque 2 (influence du choix des normes) : La définition dépend du choix des normes sur E et sur F. Mais remplacer une norme sur E ou sur F par une norme équivalente ne change pas la définition.

Autres formulations, à l'aide des boules et des voisinages : La définition donnée est équivalente à;

$$\forall \epsilon > 0 \quad \exists \eta > 0 \quad \forall x \in A \qquad x \in B_E(a, \eta) \Longrightarrow f(x) \in B_F(b, \epsilon)$$

ou à:

$$\forall V \in \mathcal{V}_F(b) \quad \exists W \in \mathcal{V}_A(a) \qquad f(W) \subset V$$

où $V_F(b)$ désigne l'ensemble des voisinages de b dans F.

On n'utilisera pas l'écriture avec les voisinages, mais elle montre bien le rôle « unificateur » de cette notion. On n'utilisera pas non plus l'écriture avec les boules, mais elle est assez « graphique ».

I.2 Caractérisation par les suites

Proposition importante : Soit $f: A \subset E \longrightarrow F$, $a \in \overline{A}$. Soit b un élément de F. f a pour limite b en a si et seulement si, pour toute suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(u_n))_{n \in \mathbb{N}}$ converge vers b.

Ce résultat est très important car très utile : il permet d'abord de déduire des résultats sur les limites de fonctions en utilisant des résultats connus sur les limites de suites. Il intervient aussi dans l'étude de suites $u_{n+1} = f(u_n)$.

Proposition peu importante : Soit $f:A\subset E\longrightarrow F$, $a\in \overline{A}$. f a une limite en a si et seulement si, pour toute suite $(u_n)_{n\in \mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(u_n))_{n\in \mathbb{N}}$ converge.

I.3 Limites infinies, limites en l'infini

Il arrive, assez souvent, que $E = \mathbf{R}$ ou $F = \mathbf{R}$.

a. Limites en $\pm \infty$

Soit $f:A \subset \mathbf{R} \longrightarrow F$; on suppose $\forall x \in \mathbf{R} \quad [x,+\infty[\cap A \neq \emptyset \text{ (ce qui signifie : } A \text{ non majorée}). Soit <math>b$ un élément de F. On définit :

$$\lim_{+\infty} f = b$$

de la manière suivante :

$$\forall \epsilon > 0 \quad \exists M \in \mathbf{R} \quad \forall x \in A \qquad x \ge M \Longrightarrow \|f(x) - b\|_F \le \epsilon.$$

Soit $f:A\subset \mathbf{R}\longrightarrow F$; on suppose A non minorée. Soit b un élément de F. On définit :

$$\lim_{-\infty} f = b \iff$$

b. Limites infinies

Soit
$$f: A \subset E \longrightarrow \mathbb{R}$$
, $a \in \overline{A}$. On définit :

$$\lim_{a} f = +\infty \iff$$

Soit
$$f: A \subset E \longrightarrow \mathbf{R}$$
, $a \in \overline{A}$. On définit :

$$\lim_{a} f = -\infty \iff$$

c. Limites infinies en $\pm \infty$

Ne concernent que les fonctions réelles d'une variable réelle : vu dans T1.

d. Unification à l'aide des voisinages

(Parenthèse culturelle hors-programme, mais unifier les différentes écritures de limites était un objectif de Hilbert)

Si A est une partie non majorée de \mathbf{R} , on appellera **voisinage de** $+\infty$ dans A toute partie V de A telle qu'il existe M réel vérifiant : $]M, +\infty[\cap A \subset V.$ Ainsi, un voisinage de $+\infty$ dans \mathbf{R} est une partie de \mathbf{R} contenant un intervalle non majoré (ou : contenant tous les réels supérieurs ou égaux à un réel donné). On définit de même les voisinages de $-\infty$. La limite de f en a (finie ou infinie) est alors b (fini ou infini) si et seulement si

$$\forall V \in \mathcal{V}_F(b) \quad \exists W \in \mathcal{V}_A(a) \qquad f(W) \subset V$$
.

On remarque que cette définition contient aussi les limites de suites considérées comme applications de la partie **N** de **R** à valeurs dans F, avec $a = +\infty$.

I.4 Limite quand la variable tend en norme vers l'infini

Dans **R**, c'est un peu particulier, car on peut naturellement distinguer deux manières particulières de tendre vers l'infini. Mais dans un espace vectoriel normé quelconque, on se contente de dire que x tend vers « l'infini » lorsque $\|x\|$ tend vers $+\infty$.

Soit $f:A\subset E\longrightarrow F$; on suppose A non bornée. Soit b un élément de F. On définit $\lim_{\|x\|_E\to +\infty}f(x)=b$ par

$$\forall \epsilon > 0 \quad \exists M \in \mathbf{R} \quad \forall x \in A \qquad \|x\|_E \ge M \Longrightarrow \|f(x) - b\|_F \le \epsilon$$
.

On définit de même, si f est à valeurs réelles, $\lim_{\|x\|_E \to +\infty} f(x) = \pm \infty$.

I.5 Opérations sur les limites

a. Combinaison linéaire

Soit f, g deux applications d'une partie A d'un K-espace vectoriel normé E vers un K-espace vectoriel normé F, et soit $a \in \overline{A}$.

Si
$$f(x) \xrightarrow[x \to a]{} b$$
 et $g(x) \xrightarrow[x \to a]{} c$, si $(\lambda, \mu) \in \mathbf{K}^2$, alors
$$\lambda f(x) + \mu g(x) \xrightarrow[x \to a]{} \lambda b + \mu c$$

b. Produit par une fonction à valeurs scalaires

On considère deux **K**-espaces vectoriels normés E et F, $A \subset E$, $a \in \overline{A}$.

Si
$$\lambda : A \subset E \to \mathbf{K}$$
, vérifie $\lambda(x) \xrightarrow[x \to a]{} \alpha$, Si $f : A \subset E \to \mathbf{F}$, vérifie $f(x) \xrightarrow[x \to a]{} b$, alors

$$(\lambda.f)(x) = \lambda(x).f(x) \xrightarrow[x \to a]{} \alpha.b.$$

Si
$$f(x) \xrightarrow[x \to a]{} 0_F$$
 et si λ est bornée au voisinage de a , ou Si $\lambda(x) \xrightarrow[x \to a]{} 0$ et si f est bornée au voisinage de a , alors $(\lambda.f)(x) = \lambda(x).f(x) \xrightarrow[x \to a]{} 0_F$.

I.6 Limite suivant une partie

Soit $f:A\subset E\longrightarrow F$, $a\in \overline{A}$, soit P une partie de A telle que a soit adhérent à P. La limite de f en a suivant P est, si elle existe, la limite en a de la restriction de f à P. Si A est une partie de \mathbf{R} , la limite en a suivant $[a,+\infty[\cap A \text{ ou }]a,+\infty[\cap A \text{ est (bien sûr si elle existe) la$ **limite à droite**en <math>a, notée lim ou plus explicitement $\lim_{\substack{x\to a\\x\geq a}}$ et $\lim_{\substack{x\to a\\x>a}}$ respectivement. On définit de même les limites à gauche. On considère aussi parfois la limite en a suivant $A\setminus\{a\}$, c'est-à-dire $\lim_{\substack{x\to a\\x\neq a}}$

I.7 Caractérisation par les composantes

Proposition Soit $f: A \subset E \longrightarrow F$, $a \in \overline{A}$. On suppose dim $(F) < +\infty$, $(e_1, ..., e_p)$ une base de F. On note, pour tout $x \in A$,

$$f(x) = \sum_{k=1}^{p} f_k(x)e_k$$

Soit
$$\ell = \sum_{k=1}^{p} \ell_k e_k \in F$$
. Alors

$$\left(f(x) \xrightarrow[x \to a]{} \ell\right) \Longleftrightarrow \left(\forall k \in [\![1,p]\!] \quad f_k(x) \xrightarrow[x \to a]{} \ell_k\right)$$

I.8 Limite d'une application à valeurs dans un espace produit

Proposition

Soit $f: A \subset E \longrightarrow F_1 \times \cdots \times F_p$, $a \in \overline{A}$; on note, pour tout x,

$$f(x) = \big(f_1(x), \dots, f_n(x)\big)$$

On définit ainsi des applications $f_i: A \subset E \longrightarrow F_i$. Alors f a pour limite $(b_1, ..., b_n)$ en a si et seulement si chaque f_i a pour limite b_i en a.

II Continuité

II.1 Définition

Définition : Soit $f:A \subset E \longrightarrow F$, $a \in A$. On dit que f est continue en a lorsque

$$f(x) \xrightarrow[x \to a]{} f(a)$$

ou, ce qui est équivalent, lorsque f a une limite en a (cette limite ne peut alors être autre que f(a)).

On dit que f est continue sur A lorsque f est continue en tout point de A.

Remarque : La continuité en un point est une propriété locale : si deux applications coïncident au voisinage d'un point, la continuité de l'une en ce point équivaut à celle de l'autre.

Exemple: Toute fonction lipschitzienne est continue.

II.2 Caractérisation de la continuité par les suites

Proposition: f est continue en a si et seulement si, pour toute suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(a_n))_{n \in \mathbb{N}}$ converge (vers f(a)).

II.3 Opérations sur les fonctions continues

E, F sont des K-espaces vectoriels.

Proposition

Si $f: A \subset E \to F$ et $g: A \subset E \to F$ sont continues en a, si $(\lambda, \mu) \in \mathbf{K}^2$, $\lambda f + \mu g$ est continue en a.

Proposition

Si $f: A \subset E \to F$ et $g: A \subset E \to F$ sont continues sur A, si $(\lambda, \mu) \in \mathbf{K}^2$, $\lambda f + \mu g$ est continue sur A.

Proposition

Si $f:A \subset E \to F$ et $\lambda:A \subset E \to \mathbf{K}$ sont continues en a (resp. sur A), $x \mapsto \lambda(x) f(x)$ est continue en a (resp. sur A).

 $\mathscr{C}(A, F)$ est donc un **K**-espace vectoriel, $\mathscr{C}(A, \mathbf{K})$ est une **K**-algèbre (**K**-espace vectoriel, anneau, et $\alpha(f \times g) = (\alpha f) \times g = f \times (\alpha g)$).

Proposition

Si f est continue en x et g est continue en f(x), $g \circ f$ est continue en x. Si f est continue sur A et g est continue sur f(A), $g \circ f$ est continue sur A.

II.4 Caractérisation par les composantes

Proposition Soit $f: A \subset E \longrightarrow F$, $a \in \overline{A}$. On suppose dim $(F) < +\infty$, $(e_1, ..., e_p)$ une base de F. On note, pour tout $x \in A$,

$$f(x) = \sum_{k=1}^{p} f_k(x)e_k$$

Alors f est continue en a (resp. sur A) si et seulement si chaque f_k l'est.

II.5 Continuité d'une application à valeurs dans un espace produit

Proposition: Soit $f: A \subset E \longrightarrow F_1 \times \cdots \times F_p$, $a \in A$. On définit les applications $f_i: A \subset E \longrightarrow F_i$ comme dans **8.**. Alors f est continue en a (respectivement sur A) si et seulement si chaque f_i l'est.

II.6 Continuité et densité

a. Le résultat

Proposition : Soit $f:A\subset E\longrightarrow F$ et $g:A\subset E\longrightarrow F$ deux applications. On suppose

- (i) f et g continues sur A
- (ii) D dense dans A

(iii)
$$\forall x \in D$$
 $f(x) = g(x)$

Alors
$$f = g$$
 (i.e. $\forall x \in A$ $f(x) = g(x)$).

Autrement dit, deux applications continues qui coïncident sur une partie dense sont égales.

b. L'exercice classique

On cherche les fonctions $f: \mathbf{R} \to \mathbf{R}$ continues et vérifiant

$$\forall (x, y) \in \mathbf{R}^2 \qquad f(x+y) = f(x) + f(y)$$

(On peut rencontrer à l'oral des équations fonctionnelles analogues).

- 1. Montrer $\forall x \in \mathbf{R} \quad \forall m \in \mathbf{Z} \qquad f(mx) = mf(x)$.
- 2. Montrer $\forall x \in \mathbf{R} \quad \forall r \in \mathbf{Q} \qquad f(rx) = rf(x)$.
- 3. Montrer qu'il existe $\alpha \in \mathbf{R}$ tel que $\forall x \in \mathbf{R}$ $f(x) = \alpha x$.

II.7 Image réciproque d'un ouvert, d'un fermé

Proposition : Soit $f:A\subset E\longrightarrow F$ une application continue. Alors l'image réciproque par f de tout ouvert (de F) est un ouvert de A (i.e. un ouvert « relatif » de A). L'image réciproque par f de tout fermé (de F) est un fermé de A.

Autrement dit, soit $X \subset F$.

Si X est ouvert, $f^{-1}(X)$ est un ouvert de A.

Si *X* est fermé, $f^{-1}(X)$ est fermé de *A*.

C'est un résultat très utile! Par exemple, si f et g sont deux fonctions continues sur A à valeurs réelles,

 $\{x \in A ; f(x) = g(x)\}$ est

 $\{x \in A ; f(x) < g(x)\}$ est

 $\{x \in A : f(x) \neq g(x)\}\$ est

On verra beaucoup d'exemples d'applications de ce résultat.

Exercice culturel : Soit $f: A \subset E \longrightarrow F$. On suppose que l'image réciproque par f de tout ouvert de F est un ouvert de A. Montrer que f est continue.

Bien que ce soit complètement hors-programme, on pourra être intéressé(e) par le fait que c'est ici la définition générale de la continuité d'une application : une application est continue si et seulement si l'image réciproque par cette application de tout ouvert est un ouvert.

II.8 Continuité uniforme

La fonction $f:A\subset E\longrightarrow F$ est uniformément continue sur A lorsque

$$\forall \epsilon > 0 \quad \exists \eta > 0 \quad \forall (x,y) \in A^2 \qquad \|y - x\|_E \leq \eta \implies \|f(y) - f(x)\| \leq \epsilon$$

Les applications lipschitziennes, entre autres, sont uniformément continues.

Table des matières

I	Lim	ites	2
	I.1	Définition	2
	I.2	Caractérisation par les suites	3
	I.3	Limites infinies, limites en l'infini	3
		a. Limites en $\pm \infty$	3
		b. Limites infinies	4
		c. Limites infinies en $\pm \infty$	4
		d. Unification à l'aide des voisinages	4
	I.4	Limite quand la variable tend en norme vers l'infini	5
	I.5	Opérations sur les limites	5
		a. Combinaison linéaire	5
		b. Produit par une fonction à valeurs scalaires	5
	I.6	Limite suivant une partie	6
	I.7	Caractérisation par les composantes	6
	8.I	Limite d'une application à valeurs dans un espace produit	6
II	Con	tinuité	7
	II.1	Définition	7
	II.2	Caractérisation de la continuité par les suites	7
	II.3	Opérations sur les fonctions continues	8
	II.4	Caractérisation par les composantes	8
	II.5	Continuité d'une application à valeurs dans un espace produit	8
	II.6	Continuité et densité	9
		a. Le résultat	9
		b. L'exercice classique	9
	II.7	Image réciproque d'un ouvert, d'un fermé	10
	II.8	Continuité uniforme	11