C7: exemples

Dire si les intégrales suivantes ont un sens. Lorsqu'il y a un paramètre, dire pour quelles valeurs du paramètre les intégrales ont un sens.

$$1. \int_0^{+\infty} \frac{\sin t}{1 + t^2} dt$$

La fonction $f: t \longmapsto \frac{\sin t}{1+t^2}$ est continue sur $[0, +\infty[$. De plus

$$|f(t)| = \underset{t \to +\infty}{O} \left(\frac{1}{t^2}\right)$$

Par comparaison à l'exemple de Riemann, f est intégrable sur $[1, +\infty[$, donc sur $[0, +\infty[$.

Autre rédaction : $|f(t)| \leq \frac{1}{1+t^2}$ donc, par comparaison, comme $\frac{1}{1+t^2} \mathop{\sim}_{t \to +\infty} \frac{1}{t^2} \dots$ Autre rédaction :

$$|f(t)| = \mathop{o}_{t \to +\infty} \left(\frac{1}{t^{3/2}} \right)$$

Autre rédaction (déconseillée):

$$f(t) = \underset{t \to +\infty}{O} \left(\frac{1}{t^2}\right)$$

parfaitement équivalent à la première rédaction, vu que le O « se moque du signe ». Mais si le correcteur sait que vous, vous faites attention au signe, et que vous savez que l'intégrabilité de f est celle de |f|, c'est

Autre rédaction : La fonction $f: t \longmapsto \frac{\sin t}{1+t^2}$ est continue sur $[0, +\infty[$. De plus

$$|f(t)| = \underset{t \to +\infty}{o} \left(\frac{1}{t^{3/2}}\right)$$

Par comparaison à l'exemple de Riemann, f est intégrable sur $[1, +\infty[$, donc sur $[0, +\infty[$.

Cette rédaction ne semble pas très naturelle ici, sauf si on préfère vraiment les o aux O.

$$2. \int_0^{+\infty} \frac{\operatorname{Arctan}t}{t} dt$$

La fonction $f: t \longmapsto \frac{\operatorname{Arctan} t}{t}$ est continue sur $]0, +\infty[$, prolongeable par continuité en 0 en posant f(0)=1.

On a

$$f(t) \underset{t \to +\infty}{\sim} \frac{\pi}{2t}$$

donc, par comparaison à l'exemple de Riemann, f n'est pas intégrable sur $]0,+\infty[$. Or $f\geq 0,$ on ne peut donc pas avoir une intégrale « semi-convergente ».

$$3. \int_0^1 \ln t \ dt$$

Première rédaction : ln est continue sur]0,1], négative. Par croissances comparées,

$$|\ln t| = \mathop{o}_{t \to 0} \left(\frac{1}{t^{1/2}}\right)$$

donc, par comparaison à l'exemple de Riemann, ln est intégrable sur]0,1]. (les valeurs absolues sur le ln sont facultatives).

Deuxième rédaction : Soit $x \in]0,1]$. Alors

$$\int_{x}^{1} \ln t \, dt = -1 - x \ln x + x \xrightarrow[x \to +\infty]{} -1$$

donc l'intégrale converge. Or la fonction ln est de signe constant, donc elle est intégrable sur]0,1].

4.
$$\int_0^1 (-\ln t)^{\alpha} dt \ (\alpha \in \mathbf{R})$$

Même si cela ressemble un petit peu à l'exemple précédent, c'est en fait très différent.

D'abord parce qu'ici on ne sait pas calculer de primitive.

Ensuite parce qu'il y a un piège : on risque de ne pas penser au problème en 1...Or, si $\alpha < 0$, il y a un problème en 1.

La fonction $f: t \mapsto (-\ln t)^{\alpha}$ est continue sur]0,1[, positive.

• Etude sur]0, 1/2[:

Par croissances comparées,

$$f(t) = \underset{t \to 0}{o} \left(\frac{1}{t^{1/2}}\right)$$

donc, par comparaison à l'exemple de Riemann, f est intégrable sur]0, 1/2].

• Etude sur [1/2, 1]:

Partant de

$$\ln t = \ln(1 + t - 1) \sim_{t \to 1} t - 1$$

on obtient

$$f(t) \sim (1-t)^{\alpha}$$

et donc, par comparaison à l'exemple de Riemann, f est intégrable sur [1/2, 1] si et seulement si $\alpha > -1$.

Conclusion : f est intégrable sur [0,1[si et seulement si $\alpha > -1$.

$$5. \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$$

La fonction $f: t \mapsto \frac{e^{-t}}{\sqrt{t}}$ est continue sur $]0, +\infty[$, **positive**.

• Etude sur]0,1] : On a $f(t) \underset{t \to 0}{\sim} \frac{1}{\sqrt{t}}$. Donc, par comparaison à l'exemple de Riemann, f est intégrable sur]0,1].

• Etude sur $[1, +\infty[$: On a $f(t) = o \left(\frac{1}{t^2}\right)$. Donc, par comparaison à l'exemple de Riemann, f est intégrable sur $[1, +\infty[$.

6.
$$\int_0^{+\infty} \cos t \ dt$$

 $\frac{1}{\int_0^x \cos t \ \mathrm{d}t \ \mathrm{n'a\ pas\ de\ limite\ quand}\ x \to +\infty.\ \mathrm{L'int\'egrale\ n'a\ donc\ pas}}$

7.
$$\int_0^{+\infty} \cos(t^2) dt$$

La fonction $t \longmapsto \cos(t^2)$ est continue sur $[0, +\infty[$.

On effectue le changement de variable $t = \sqrt{u}, u = t^2 : u \mapsto \sqrt{u}$ est une bijection C^1 de $]0, +\infty[$ sur lui-même. L'existence de l'intégrale équivaut à celle de l'intégrale

$$\int_0^{+\infty} \frac{\cos u}{2\sqrt{u}} \, \mathrm{d}u$$

et en cas d'existence elles sont égales. Comme

$$\frac{\cos u}{2\sqrt{u}} \underset{u \to 0}{\sim} \frac{1}{2\sqrt{u}}$$

la fonction $u \longmapsto \frac{\cos u}{2\sqrt{u}}$, positive, est intégrable sur]0,1].

En revanche, l'existence de l'intégrale

$$\int_{1}^{+\infty} \frac{\cos u}{2\sqrt{u}} \, \mathrm{d}u$$

demande une intégration par parties comme l'exemple standard vu dans le cours de

$$\int_0^{+\infty} \frac{\sin u}{u} \, \mathrm{d}u$$

8.
$$\int_0^{+\infty} \cos(\sqrt{t}) dt$$

La fonction $t \longmapsto \cos(\sqrt{t})$ est continue sur $[0, +\infty[$.

On effectue le changement de variable $u=\sqrt{t},\,t=u^2.$ L'existence de l'intégrale équivaut à celle de l'intégrale

$$\int_0^{+\infty} 2u \cos u \, du$$

et en cas d'existence elles sont égales. Or, déjà $\int_0^{+\infty} \cos u \, du$ ne converge pas, alors celle-ci. . On peut calculer par parties $\int_0^x u \cos u \, du$ et voir qu'il n'y a pas de limite en $+\infty$. Ou encore dire que l'aire sous une arche est grande : si $k \geq 1$,

$$\int_{-\pi/2 + 2k\pi}^{\pi/2 + 2k\pi} u \cos u \, du \ge (-\pi/2 + 2k\pi) \int_{-\pi/2 + 2k\pi}^{\pi/2 + 2k\pi} \cos u \, du = (4k - 1)\pi$$

(On a pris soin de considérer une zone de positivité du cosinus, pour pouvoir multiplier des inégalités par $\cos u$ sans en changer le sens). Or si $\int_0^x u \cos u \, \mathrm{d} u \text{ avait une limite réelle en } +\infty, \int_{-\pi/2+2k\pi}^{\pi/2+2k\pi} u \cos u \, \mathrm{d} u \text{ tendrait vers 0 quand } k \to +\infty \text{ (relation de Chasles)}.$

$$9. \int_0^{\pi/2} \tan x \ dx$$

La fonction tan est continue, positive sur $[0, \pi/2[$. Plusieurs méthodes sont tout aussi valables :

- Un équivalent : $\tan(x) = \frac{1}{\tan(\pi/2 x)} \sim \frac{1}{\pi/2 x}$, donc pas d'intégrabilité (comparaison à une fonction de Riemann), pas plus de convergence d'intégrale puisque pour une fonction positive c'est la même chose.
- Un calcul de $\int_0^X \tan x \, dx$ (avec un ln) qui aboutit bien sûr à la même conclusion.
- un changement de variable x = Arctan(u). Même conclusion.

$$10. \int_0^1 \frac{\ln t}{\sqrt{1-t}} dt$$

La fonction $t \longmapsto \frac{\ln t}{\sqrt{1-t}}$ est continue, négative sur]0,1[. Notons-la f. On a

$$f(t) \underset{t\to 0}{\sim} \ln t$$

donc, par croissances comparées,

$$|f(t)| = \underset{t \to 0}{o} \left(\frac{1}{t^{1/2}}\right)$$

(valeurs absolues facultatives, mais recommandées) ce qui donne l'intégrabilité sur [0,1/2]. Mais aussi

$$f(t) \underset{t \to 1}{\sim} -\sqrt{1-t}$$

et donc f est prolongeable par continuité à]0,1], pas de problème donc d'intégrabilité sur [1/2,1[.

11.
$$\int_0^{+\infty} \frac{dt}{1 + t^{\alpha}} \qquad (\alpha \in \mathbf{R})$$

La fonction $t \longmapsto \frac{1}{1+t^{\alpha}}$ est continue positive sur $]0,+\infty[$, continue sur $[0,+\infty[$ si $\alpha \geq 0$ et prolongeable par continuité à $[0,+\infty[$ si $\alpha < 0$ (elle a dans ce dernier cas pour limite 0 en 0). Si $\alpha < 0$, $f(t) \underset{t \to +\infty}{\sim} 1$. Si $\alpha = 0$, $f(t) \underset{t \to +\infty}{\sim} \frac{1}{2}$. Si $\alpha > 0$, $f(t) \underset{t \to +\infty}{\sim} \frac{1}{t^{\alpha}}$. Par comparaison à une fonction de Riemann, il y a intégrabilité (ou convergence de l'intégrale, ici c'est la même chose) si et seulement si $\alpha > 1$.

12.
$$\int_e^{+\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} dx \ (\alpha, \beta \text{ r\'eels}).$$

La fonction $f: x \longmapsto \frac{(\ln x)^{\alpha}}{x^{\beta}}$ est continue positive sur $[e, +\infty[$. Si $\beta > 1$, fixons $\gamma \in]1, \beta[$. Par croissances comparées,

$$f(x) = \underset{x \to +\infty}{o} \left(\frac{1}{x^{\gamma}}\right)$$

et donc, par comparaison à une intégrale de Riemann, f est intégrable sur $[e,+\infty[$.

Si β < 1, par croissances comparées,

$$\frac{1}{x} = \underset{x \to +\infty}{o} (f(x))$$

et donc, par comparaison à une intégrale de Riemann, f n'est pas intégrable sur $[e,+\infty[.$

Si $\beta = 1$ et $\alpha > 0$, encore non intégrabilité par le même argument.

Si $\beta = 1$ et $\alpha = 0$, non intégrabilité directe (Riemann).

Si $\beta=1$ et $\alpha<0$, on ne peut plus utiliser de comparaison (ce n'est plus assez « fin »), on calcule

$$\int_{e}^{X} \frac{(\ln x)^{\alpha}}{x} dx$$

car on sait trouver une primitive (on distingue le cas $\alpha=-1$, la primitivation se fait avec un $\ln(\ln x)$, sinon la primitivation se fait avec une puissance de $\ln x$). On trouve qu'il y a intégrabilité si et seulement si $\alpha<-1$. Bien sûr on a déjà rencontré ce genre de chose, c'est une intégrale « de Bertrand ».

13.
$$\int_{1}^{+\infty} \frac{\sqrt{x+1} - \sqrt{x}}{x} dx$$

Fonction continue, positive sur $[1,+\infty[$. Il est judicieux d'obtenir un équivalent en $+\infty$. Pour cela, classiquement, mise en facteur dans 1+x du terme prédominant, x:

$$\sqrt{x+1} - \sqrt{x} = x^{1/2} \left(\left(1 + \frac{1}{x} \right)^{1/2} - 1 \right)$$

$$= x^{1/2} \left(1 + \frac{1}{2x} + o \left(\frac{1}{x} \right) - 1 \right)$$

$$\underset{x \to +\infty}{\sim} \frac{1}{2x^{1/2}}$$

Donc $\frac{\sqrt{x+1}-\sqrt{x}}{x} \underset{x\to+\infty}{\sim} \frac{1}{2x^{3/2}}$, ce qui donne l'intégrabilité par comparaison à l'exemple de Riemann (3/2>1).

14.
$$\int_{-\infty}^{+\infty} e^{-t^2} P(t) dt, P \text{ fonction polynôme}$$

Fonction continue sur] $-\infty, +\infty[$. Par croissances comparées, $\left|e^{-t^2}P(t)\right| = \underset{t\to\pm\infty}{o}\left(\frac{1}{t^2}\right)$ d'où l'intégrabilité.

$$15. \int_0^{+\infty} \frac{\sin\sqrt{t}}{t} \ dt$$

Fonction continue sur $]0, +\infty[$; intégrabilité sur]0, 1[assez simple grâce à l'équivalent

$$\left|\frac{\sin\sqrt{t}}{t}\right| \underset{t\to 0}{\sim} \frac{1}{\sqrt{t}}$$

et la référence à Riemann.

D'autre part, par changement de variable $t=u^2,\ u=\sqrt{t}$, l'intégrale $\int_1^{+\infty} \frac{\sin\sqrt{t}}{t} dt$ a même nature (et dans le cas de convergence, même valeur) que $2\int_1^{+\infty} \frac{\sin u}{u} du$, intégrale notoirement semi-convergente (mais il faut savoir le redémontrer). Convergence, donc, on peut même dire semi-convergence. Une astuce consistait à écrire le dénominateur $\sqrt{t} \times \sqrt{t}$, intégrer par parties car on sait primitiver $\frac{\sin\sqrt{t}}{\sqrt{t}}$, on aboutit au même résultat.

$$16. \int_0^{+\infty} \frac{dt}{\sqrt{\sin t}}$$

Fonction continue positive sur $]0,+\infty[$, équivalente à $\frac{1}{\sqrt{t}}$ au voisinage de 0, équivalente à $\sqrt{2}e^{-t/2}$ au voisinage de $+\infty$, donc intégrable.

17.
$$\int_{-\infty}^{+\infty} \frac{dt}{e^t + t^2 e^{-t}}$$

Fonction continue positive sur] $-\infty, +\infty$ [, équivalente au voisinage de $+\infty$ à e^{-t} , équivalente au voisinage de $-\infty$ à $\frac{e^t}{t^2}$. On en conclut l'intégrabilité.

18.
$$\int_0^{+\infty} \frac{(t+1)^{\alpha} - t^{\alpha}}{t^{\beta}} dt \ (\alpha, \ \beta \ \text{r\'eels})$$
 Grosse discussion.

19.
$$\left| \int_0^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} dt \right| (\alpha \text{ r\'eel})$$

Fonction continue, de signe constant sur chacun des intervalles]0,1] et $[1,+\infty[$, ce qui autorise à utiliser des équivalents. Au voisinage de 0, un équivalent est $t \ln t$, il y a donc une limite réelle en 0. Donc pas de problème. Au voisinage de $+\infty$, un équivalent est $\frac{\ln t}{t^{2\alpha-1}}$. Si $2\alpha-1>1$, on fixe $\beta\in]1,2\alpha-1[$, on aura

$$\frac{\ln t}{t^{2\alpha-1}} = \underset{t \to +\infty}{o} \left(\frac{1}{t^{\beta}}\right)$$

et on conclut à l'intégrabilité. Si $2\alpha - 1 \le 1$, on a

$$\frac{1}{t} = \underset{t \to +\infty}{o} \left(\frac{\ln t}{t^{2\alpha - 1}} \right)$$

et on conclut à la non intégrabilité.

$$20. \left| \int_0^1 \frac{(-\ln t)^\alpha}{(1-t)^\beta} dt \right|$$

Similaire au **4.**; la fonction est continue positive sur]0,1[, par croissances comparées elle est $\underset{t\to 0}{o}\left(\frac{1}{\sqrt{t}}\right)$ donc intégrable sur]0,1/2]; au voisinage de 1 elle est équivalente à $(1-t)^{\alpha-\beta}$, donc intégrable sur [1/2,1[si et seulement si $\alpha-\beta>-1$.