CCP 2012 math 2 corrigé

Dans tout le problème, n est un entier naturel supérieur ou égal à 2. Cet entier est quelconque sauf dans la partie I, où il est égal à 2.

On note $\mathcal{M}_n(\mathbf{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels, $(E_{i,j})$ sa base canonique $(1 \le i \le n \text{ et } 1 \le j \le n)$ et I_n sa matrice unité (tous les coefficients de $E_{i,j}$ sont nuls, sauf celui situé à la i^e ligne et à la j^e colonne, qui vaut 1).

On note $\mathbf{R}[X]$ l'algèbre des polynômes à coefficients réels.

Dans tout le problème, A est une matrice quelconque de $\mathcal{M}_n(\mathbf{R})$ et u l'endomorphisme de \mathbf{R}^n canoniquement associé à la matrice A.

Pour tout
$$P = \sum_{k=0}^{d} a_k X^k \in \mathbf{R}[X]$$
, on note $P(A) = \sum_{k=0}^{d} a_k A^k$. L'ensemble des

matrices P(A) pour tout $P \in \mathbf{R}[X]$ est noté $\mathbf{R}[A]$.

On dit que P annule A lorsque P(A) = 0, ce qui équivaut à P(u) = 0. On appelle polynôme minimal de la matrice A le polynôme minimal de l'endomorphisme u; c'est donc le polynôme unitaire de plus petit degré qui annule A.

On note φ_A l'application de $\mathcal{M}_n(\mathbf{R})$ dans $\mathcal{M}_n(\mathbf{R})$ définie par :

$$\varphi_A(M) = AM - MA$$

L'objet du problème est d'étudier quelques propriétés des éléments propres de ϕ_A . Les parties I et II étudient la diagonalisabilité de φ_A , les parties III et IV en étudient les vecteurs propres.

Les quatre parties sont indépendantes.

Partie I. Étude du cas n=2

Dans toute cette partie, on prendra n=2.

1. Vérifier que l'application φ_A est linéaire et que I_2 et A appartiennent à $\ker \phi_A$.

Si
$$(M, N) \in (\mathcal{M}_2(\mathbf{R}))^2$$
, si $\lambda \in \mathbf{R}$, alors
$$\varphi_A(\lambda M + N) = A(\lambda M + N) - (\lambda M + N)A$$
$$= \lambda (AM - MA) + AN - NA$$
$$= \lambda \varphi_A(M) + \varphi_A(N)$$
Donc
$$\varphi_A \text{ est linéaire}$$
 de plus
$$\varphi_A(I_2) = AI_2 - I_2A = A - A = (0)$$
$$\varphi_A(A) = AA - AA = (0)$$

$$\boxed{(I_2, A) \in (\ker \varphi_A)^2}$$

Dans la suite de cette partie, on pose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbf{R}).$

2. Donner la matrice de φ_A dans la base $(E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$ de $\mathcal{M}_2(\mathbf{R})$.

On calcule $\varphi_A(E_{1,1})=aE_{2,1}-bE_{1,2}$ (en « posant les tableaux » ou en utilisant la table de multiplication de la base canonique, peu importe), $\varphi_A(E_{2,2})=-cE_{2,1}+bE_{1,2}, \ \varphi_A(E_{1,2})=-cE_{1,1}+cE_{2,2}+(a-d)E_{1,2}$ et $\varphi_A(E_{2,1})=bE_{1,1}-bE_{2,2}+(d-a)E_{2,1}$. Finalement, la matrice cherchée est

$$\Phi = \begin{pmatrix} 0 & 0 & -c & b \\ 0 & 0 & c & -b \\ -b & b & a-d & 0 \\ c & -c & 0 & d-a \end{pmatrix}$$

Dans la suite de cette partie, on suppose que $\varphi_A \neq 0$ (c'est-à-dire que $A \neq \lambda I_2$ pour tout $\lambda \in \mathbf{R}$).

3. Donner le polynôme caractéristique de φ_A sous forme factorisée (on pourra utiliser la calculatrice).

Notons-le P:

$$P(X) = \begin{vmatrix} X & 0 & c & -b \\ 0 & X & -c & b \\ b & -b & X - (a-d) & 0 \\ -c & c & 0 & X - (d-a) \end{vmatrix}$$

On ajoute par exemple la deuxième colonne à la première, ce qui permet de factoriser X :

$$P(X) = X \begin{vmatrix} 1 & 0 & c & -b \\ 1 & X & -c & b \\ 0 & -b & X - (a-d) & 0 \\ 0 & c & 0 & X - (d-a) \end{vmatrix}$$

Puis on retranche la première ligne à la deuxième, et on développe par rapport à la première colonne :

$$P(X) = X \begin{vmatrix} X & -2c & 2b \\ -b & X - (a-d) & 0 \\ c & 0 & X - (d-a) \end{vmatrix}$$

Le développement par la règle de Sarrus donne alors

$$P(X) = X \left[X \left(X^2 - (a-d)^2 \right) - 2bc(X - (a-d)) - 2bc(X - (d-a)) \right]$$

Et donc

$$P(X) = X^{2} [X^{2} - (a - d)^{2} - 4bc]$$

4. En déduire que φ_A est diagonalisable si et seulement si $(d-a)^2+4bc>0$.

Si $(d-a)^2+4bc<0$, le polynôme caractéristique de φ_A n'est pas scindé sur ${\bf R}$, donc φ_A n'est pas diagonalisable.

Si $(d-a)^2+4bc=0$, Sp $(\varphi_A)=\{0\}$. Pour que φ_A soit diagonalisable, il faut alors qu'elle soit nulle, donc $a=b,\,b=c=0$, exclu par hypothèse.

Si $(d-a)^2 + 4bc > 0$, $\operatorname{Sp}(\varphi_A) = \{0, \sqrt{(d-a)^2 + 4bc}, -\sqrt{(d-a)^2 + 4bc}\}$. Les deux valeurs propres non nulles sont simples, les sous-espaces propres associés sont donc de dimension 1. La valeur propre 0 est double, et donc dim $(\operatorname{Ker}(\varphi_A)) \leq 2$. Mais d'autre part I_2 et A sont dans $\operatorname{Ker}(\varphi_A)$, et forment par hypothèse une famille libre. Donc dim $(\operatorname{Ker}(\varphi_A)) = 2$. La somme des dimensions des sous-espaces propres vaut 1+1+2, c'est-à-dire 4, or dim $(\mathcal{M}_2(\mathbf{R})) = 4$. Donc φ_A est diagonalisable.

$$\varphi_A$$
 est diagonalisable si et seulement si $(d-a)^2+4bc>0$

5. Démontrer que φ_A est diagonalisable si et seulement si A est diagonalisable.

Le polynôme caractéristique de A est $P_A = X^2 - (a+d)X + ad - bc$. Soit $\Delta = (a+d)^2 - 4(ad-bc)$.

Si $\Delta < 0$, P_A n'est pas scindé, A ne peut pas être diagonalisable.

Si $\Delta=0$, A a une valeur propre unique. Elle est diagonalisable si et seulement si elle est de la forme λI_2 , ce qui est exclu.

Si $\Delta>0,\,A$ a deux valeurs propres distinctes, elle est donc diagonalisable. Donc A est diagonalisable si et seulement si $\Delta>0.$ Mais

$$\Delta = (a - d)^2 + 4bc$$

Donc

 φ_A est diagonalisable si et seulement si A est diagonalisable

Partie II. Étude du cas général

On note $c = (c_1, \ldots, c_n)$ la base canonique de \mathbf{R}^n .

6. On suppose dans cette question que A est diagonalisable.

On note $e=(e_1,\ldots,e_n)$ une base de vecteurs propres de u (défini au début du problème) et, pour tout entier i tel que $1 \leq i \leq n$, λ_i la valeur propre associée au vecteur e_i . On note alors P la matrice de passage de la

base
$$c$$
 à la base e et $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$.

Enfin, pour tout couple (i,j) d'entiers tels que $1 \le i \le n$ et $1 \le j \le n$, on pose :

$$B_{i,j} = PE_{i,j}P^{-1}$$

(a) Exprimer, pour tout couple (i, j), la matrice $DE_{i,j} - E_{i,j}D$ en fonction de la matrice $E_{i,j}$ et des réels λ_i et λ_j .

On a
$$DE_{i,j} - E_{i,j}D = (\lambda_i - \lambda_j)E_{i,j}$$

J'espère que ça suffit, comme justification...Un certain nombre de candidats est capable de faire ça de tête.

(b) Démontrer que, pour tout couple (i, j), $B_{i,j}$ est un vecteur propre de ϕ_A .

On calcule

$$\phi_A(B_{i,j}) = PDP^{-1}PE_{i,j}P^{-1} - PE_{i,j}P^{-1}PDP^{-1}$$

$$= P[DE_{i,j} - E_{i,j}D]P^{-1}$$

$$= (\lambda_i - \lambda_j)B_{i,j}$$

Comme de plus $B_{i,j} \neq (0)$,

$$B_{i,j}$$
 est un vecteur propre de φ_A

(c) En déduire que φ_A est diagonalisable.

L'application $M \longmapsto PMP^{-1}$ étant un automorphisme de $\mathcal{M}_n(\mathbf{R})$ (automorphisme réciproque : $M \longmapsto P^{-1}MP$), transforme la base $(E_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbf{R})$ en une base de $\mathcal{M}_n(\mathbf{R})$. Cette base est constituée de vecteurs propres de φ_A , donc

$$\varphi_A$$
 est diagonalisable

7. On suppose dans cette question que φ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbf{R})$.

On note $(P_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une base de vecteurs propres de φ_A et, pour tout couple (i,j), $\lambda_{i,j}$ la valeur propre associée à $P_{i,j}$.

- (a) Dans cette question, on considère A comme une matrice à coefficients complexes $(A \in \mathcal{M}_n(\mathbf{R}) \subset \mathcal{M}_n(\mathbf{C}))$ et φ_A comme un endomorphisme de $\mathcal{M}_n(\mathbf{C})$ (défini par $\varphi_A(M) = AM MA$ pour tout $M \in \mathcal{M}_n(\mathbf{C})$).
 - i. Justifier que toutes les valeurs propres de φ_A sont réelles.

La famille $(P_{i,j})_{1 \leq i,j \leq n}$ est une base du **R**-espace vectoriel $\mathcal{M}_n(\mathbf{R})$, c'est donc une base du **C**-espace vectoriel $\mathcal{M}_n(\mathbf{C})$

[il va de soi qu'on considère $\mathcal{M}_n(\mathbf{C})$ comme \mathbf{C} -espace vectoriel, car c'est l'habitude, si on ne la suivait pas l'énoncé le dirait. $\mathcal{M}_n(\mathbf{C})$ est bien, aussi, un \mathbf{R} -espace vectoriel, mais de dimension $2n^2$, il faudrait rajouter par exemple les $iP_{u,v}$ pour avoir une base du \mathbf{R} -espace vectoriel $\mathcal{M}_n(\mathbf{C})$]

Elle est en effet libre : si les $\alpha_{r,s}$ et les $\beta_{r,s}$ sont des réels,

$$\sum_{1 \le r,s \le n} (\alpha_{r,s} + i\beta_{r,s}) P_{r,s} = (0) \Longrightarrow \sum_{1 \le r,s \le n} \alpha_{r,s} P_{r,s} = \sum_{1 \le r,s \le n} \beta_{r,s} P_{r,s} = (0)$$
$$\Longrightarrow \forall (r,s) \qquad \alpha_{r,s} = \beta_{r,s} = 0$$

et elle comprend n^2 vecteurs de $\mathcal{M}_n(\mathbf{C})$ qui est de dimension n^2 . Dans cette base, la matrice de ϕ_A est diagonale, à diagonale réelle, donc

Toutes les valeurs propres de φ_A sont réelles. (ce sont les $\lambda_{i,j}$).

[Remarque : en utilisant aussi les $iP_{r,s}$, on voit que même si on considère $\mathcal{M}_n(\mathbf{C})$ comme un **R**-espace vectoriel, les valeurs propres de ϕ_A sont réelles!].

ii. Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors z est aussi une valeur propre de A^T .

Si z est valeur propre de A, alors $\det(zI_n-A)=0$. Mais alors $\det\left((zI_n-A)^T\right)=0$, donc $\det(zI_n-A^T)=0$. Et donc

Si z est valeur propre de A, z est aussi valeur propre de A^T

iii. Soit $z \in \mathbf{C}$. On suppose que z et \overline{z} sont deux valeurs propres de la matrice A. On considère alors $X \in \mathcal{M}_{n,1}(\mathbf{C})$ $(X \neq 0)$ et $Y \in \mathcal{M}_{n,1}(\mathbf{C})$ $(Y \neq 0)$ tels que AX = zX et $A^T Y = \overline{z}Y$. En calculant $\varphi_A(XY^T)$, démontrer que $z - \overline{z}$ est une valeur propre de φ_A .

On calcule

$$\varphi_A(X Y^T) = AXY^T - XY^T A$$

$$= zXY^T - X(A^T Y)^T$$

$$= zXY^T - X(\overline{z}Y)^T$$

$$= (z - \overline{z})XY^T$$

Reste à vérifier que $XY^T \neq 0$. Mais $(XY^T)_{i,j} = x_i y_j$ pour tous i,j dans $[\![1,n]\!]$. Il existe i tel que $x_i \neq 0$ et j tel que $y_j \neq 0$, on a alors $(XY^T)_{i,j} \neq 0$. Et on conclut bien

 $z - \overline{z}$ est une valeur propre de φ_A

(b) En déduire que la matrice A a au moins une valeur propre réelle.

Poursuivons iii. : donc, d'après i., $z - \overline{z} \in \mathbf{R}$. Mais d'autre part $z - \overline{z} \in i\mathbf{R}$. Donc $z - \overline{z} = 0$. Et donc $z \in \mathbf{R}$.

Mais la matrice A a au moins une valeur propre complexe z. Et \overline{z} est alors aussi valeur propre de A, \dots

car si AX = zX avec $X \neq 0$, $\overline{AX} = \overline{zX}$ (on note \overline{Y} la matrice, colonne ici, dont les coefficients sont les conjugués des coefficients de Y), donc $A\overline{X} = \overline{z}\overline{X}$, et $\overline{X} \neq 0...$

ou, peut-être mieux, car les valeurs propres de A sont les racines de $\det(XI_n-A)$, qui est dans $\mathbf{R}[X]$, ce qui implique que si z en est racine alors \overline{z} aussi.

Finalement, A a au moins une valeur propre réelle

On note λ une valeur propre réelle de A et $X \in \mathcal{M}_{n,1}(\mathbf{R})$ $(X \neq 0)$ une matrice colonne telle que $AX = \lambda X$.

(c) Démontrer que, pour tout couple (i, j), il existe un réel $\mu_{i,j}$, que l'on exprimera en fonction de λ et $\lambda_{i,j}$, tel que $AP_{i,j}X = \mu_{i,j}P_{i,j}X$.

On calcule:

$$AP_{i,j}X = \varphi_A(P_{i,j})X + P_{i,j}AX$$

= $\lambda_{i,j}P_{i,j}X + P_{i,j}(\lambda X)$
= $(\lambda_{i,j} + \lambda)P_{i,j}X$

On obtient bien

$$AP_{i,j}X = \mu_{i,j}P_{i,j}X$$
 avec $\mu_{i,j} = \lambda_{i,j} + \lambda$

(d) En déduire que A est diagonalisable.

[La question la plus délicate du problème. Que veut-on? une base de vecteurs propres. Les $P_{i,j}X$ sont vecteurs propres lorsqu'ils sont non nuls, et il s ne sont certainement pas indépendants, car il y en a n^2 dans un espace de dimension n. Donc on aimerait bien extraire des $P_{i,j}X$ une base de $\mathcal{M}_{n,1}(\mathbf{R})$. Quand peut-on extraire d'une famille donnée une base? quand cette famille est génératrice. On va donc essayer de montrer que la famille est génératrice. Mais il faut encore réfléchir : comment montrer que cette famille est génératrice? à l'aide de la surjectivité de...]

Considérons $\psi: \begin{cases} \mathcal{M}_n(\mathbf{R}) & \longrightarrow & \mathcal{M}_{n,1}(\mathbf{R}) \\ M & \longmapsto & MX \end{cases}$. Constatons que ψ est surjective. Pourquoi?

Méthode « standard » : (Inadaptée ici, mais on la donne quand même. Voir à la fin la « bonne méthode », appelée méthode directe) pour étudier l'image d'une application linéaire en dimension finie (il est clair ici que ψ est linéaire) on étudie son noyau. Or

$$\psi(M) = 0 \iff MX = 0$$

Donc

$$\operatorname{Ker}(\psi) = \{ M \in \mathcal{M}_n(\mathbf{R}) ; MX = 0 \}$$

Mais déterminer la dimension de $\mathrm{Ker}(\psi)$ demande un petit peu de réflexion.

Sous-méthode 1 : résoudre le problème dans un cas où X est simple :

prenons
$$X = E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
. Alors $\operatorname{Ker}(\psi)$ est l'ensemble des matrices de

première ligne nulle, il est donc de dimension $n^2 - n$. Si, maintenant, X est quelconque non nulle, il existe $P \in GL_n(\mathbf{R})$ tel que $X = PE_1$ (en effet, $X = PE_1$ signifie que X est la première colonne de P. Or étant donné une colonne non nulle, X ici, elle peut être complétée en une base de $\mathcal{M}_{n,1}(\mathbf{R})$, et la matrice dont la famille des colonnes est cette base est inversible). Alors

$$\psi(M) = 0 \iff MPE_1 = 0$$

donc, si $\psi_1: M \longmapsto ME_1$, l'application $M \mapsto MP$ est une application linéaire de $\operatorname{Ker}(\psi)$ dans $\operatorname{Ker}(\psi_1)$, bijective car P est inversible, donc $\operatorname{dim}(\operatorname{Ker}(\psi)) = \operatorname{dim}(\operatorname{Ker}(\psi_1)) = n^2 - n$.

Sous-méthode 2 : en considérant les endomorphismes associés, si x est le vecteur dont la matrice colonne des composantes dans la base canonique est X, la dimension de $\mathrm{Ker}(\psi)$ est la dimension de

$$F = \{ u \in \mathcal{L}(\mathbf{R}^n) ; \ u(x) = 0 \}$$

en complétant x en une base $(x, x_2, ..., x_n)$ de \mathbf{R}^n , F est l'ensemble des endomorphismes de \mathbf{R}^n dont la matrice dans cette base a une première colonne nulle, donc est de dimension $n^2 - n$.

On conclut alors, en remarquant que le théorème du rang donne

$$n^2 = \operatorname{rg}(\psi) + \dim\left(\operatorname{Ker}(\psi)\right)$$

et donc $rg(\psi) = n$, ψ est surjective.

Méthode directe: soit $x \in \mathbf{R}^n \setminus \{0\}$; montrons que pour tout $y \in \mathbf{R}^n$ il existe $u \in \mathcal{L}(\mathbf{R}^n$ tel que u(x) = y. Comme on peut compléter x en une base (x, x_2, \ldots, x_n) de \mathbf{R}^n , c'est une conséquence de la définition d'une application linéaire par les images des vecteurs d'une base. Matriciellement, cela revient bien à dire que ψ est surjective.

Fin de la démonstration :

Comme ψ est surjective, la famille $(P_{i,j}X)_{1\leq i,j\leq n}$ engendre $\mathcal{M}_{n,1}(\mathbf{R})$, on peut donc en extraire une base de $\mathcal{M}_{n,1}(\mathbf{R})$. Cette base étant constituée de vecteurs propres de A,

A est diagonalisable

Partie III. Étude des vecteurs propres de φ_A associés à la valeur propre 0

Soit m le degré du polynôme minimal de A.

8. Démontrer que la famille (I_n, A, \dots, A^{m-1}) est une base de $\mathbf{R}[A]$.

Question de cours! à repérer depuis la lecture initiale de l'énoncé, et à bien rédiger. Le principal ingrédient est la division euclidienne des polynômes.

9. Vérifier que $\mathbf{R}[A]$ est inclus dans $\mathrm{Ker}(\varphi_A)$ et en déduire une minoration de $\dim(\mathrm{Ker}(\varphi_A))$.

Tout polynôme de A commute avec A, donc

$$\mathbf{R}[A] \subset \mathrm{Ker}(\varphi_A)$$

et donc

$$\dim\left(\mathrm{Ker}(\varphi_A)\right) \geq m$$

10. Un cas d'égalité

On suppose que l'endomorphisme u (défini au début du problème) est nilpotent d'indice n (c'est-à-dire que $u^n = 0$ et $u^{n-1} \neq 0$). On considère un vecteur y de \mathbf{R}^n tel que $u^{n-1}(y) \neq 0$ et, pour tout entier i tel que $1 \leq i \leq n$, on pose $e_i = u^{n-i}(y)$.

(a) Démontrer que la famille (e_1, e_2, \dots, e_n) est une base de \mathbb{R}^n .

Comme $\dim(\mathbf{R}^n) = n$, il suffit de montrer que (e_1, \dots, e_n) est libre. Supposons

$$\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n = 0$$

où les α_k sont des réels. C'est-à-dire

$$\alpha_1 u^{n-1}(y) + \alpha_2 u^{n-2}(y) + \dots + \alpha_n y = 0 \tag{1}$$

Si $k \geq n$, $u^k(y) = 0$, et $u^{n-1}(y) \neq 0$. Donc, en appliquant successivement u^{n-1} , u^{n-2} ,...,u à (1) on obtient successivement $\alpha_n = 0$, $\alpha_{n-1} = 0, \ldots, \alpha_2 = 0$, puis enfin $\alpha_1 = 0$ car $y \neq 0$. On conclut bien que

$$(e_1,\ldots,e_n)$$
 est une base de \mathbf{R}^n

(b) Soient $B \in \ker \varphi_A$ et v l'endomorphisme de \mathbf{R}^n canoniquement associé à B.

Démontrer que si
$$v(y) = \sum_{i=1}^{n} \alpha_i e_i \ (\alpha_i \in \mathbf{R})$$
 alors $v = \sum_{i=1}^{n} \alpha_i u^{n-i}$.

Notant
$$w = \sum_{i=1}^{n} \alpha_i u^{n-i}$$
, on a par définition $w(y) = v(y)$. Et, si $1 \le 1$

 $i \leq n$,

$$w(e_i) = w\left(u^{n-i}(y)\right)$$

$$= \sum_{k=1}^n \alpha_k u^{n-k} \left(u^{n-i}(y)\right)$$

$$= \sum_{k=1}^n \alpha_k u^{2n-i-k}(y)$$

$$= u^{n-i} \left(\sum_{k=1}^n \alpha_k u^{n-k}(y)\right)$$

$$= u^{n-i} \left(v(y)\right)$$

Mais AB = BA, donc $u \circ v = v \circ u$, et donc $u^j \circ v = v \circ u^j$ pour tout entier naturel j (récurrence sur j), et donc

$$w(e_i) = v\left(u^{n-i}(y)\right) = v(e_i)$$

Comme w et v coïncident sur une base, on conclut

Si
$$v(y) = \sum_{i=1}^{n} \alpha_i e_i \ (\alpha_i \in \mathbf{R})$$
 alors $v = \sum_{i=1}^{n} \alpha_i u^{n-i}$

(c) En déduire $\ker \varphi_A$.

Mais v(y) peut toujours se décomposer sur la base (e_1, \ldots, e_n) , donc on a toujours, si $B \in \text{Ker}(\phi_A)$, $v \in \mathbf{R}[u]$, et donc $B \in \mathbf{R}[A]$. L'inclusion réciproque ayant été montrée en 9., $\boxed{\text{Ker}(\phi_A) = \mathbf{R}[A]}$

11. Cas où u est diagonalisable

On suppose que u est diagonalisable. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ $(1 \le p \le n)$ les p valeurs propres distinctes de u et, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ le sous-espace propre associé à la valeur propre λ_k . On note m_k la dimension de cet espace propre.

(a) Soient $B \in \mathcal{M}_n(\mathbf{R})$ et v l'endomorphisme de \mathbf{R}^n canoniquement associé à B. Démontrer que $B \in \ker \varphi_A$ si et seulement si, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ est stable par v (c'est-à-dire $v(E_u(\lambda_k)) \subset E_u(\lambda_k)$).

Remarquons d'abord que

$$B \in \ker \varphi_A \Longleftrightarrow v \circ u = u \circ v$$

Supposons $u \circ v = v \circ u$. Soit $k \in [1, p]$. Pour $x \in E_u(\lambda_k)$, on a

$$u(x) = \lambda_k x$$

donc

$$u(v(x)) = v(u(x)) = v(\lambda_k x) = \lambda_k v(x)$$

donc $v(x) \in E_u(\lambda_k)$, on a donc la stabilité de $E_u(\lambda_k)$ par v. Supposons que les $E_u(\lambda_k)$ $(1 \le k \le p)$ soient stables par v. Alors, pour tout k, pour tout $x \in E_u(\lambda_k)$,

$$u(v(x)) = \lambda_k v(x)$$

et

$$v(u(x)) = v(\lambda_k x) = \lambda_k v(x)$$

Donc $u \circ v$ et $v \circ u$ coïncident sur tous les $E_u(\lambda_k)$. Mais

$$\mathbf{R}^{n} = E_{u}\left(\lambda_{1}\right) \oplus \cdots \oplus E_{u}\left(\lambda_{p}\right)$$

on a donc bien $v \circ u = u \circ v$. Et donc

 $B \in \ker \varphi_A$ si et seulement si, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ est stable par v

(b) En déduire que $B \in \ker \varphi_A$ si et seulement si la matrice de v, dans une base adaptée à la décomposition de \mathbf{R}^n en somme directe des sous-espaces propres de u, a une forme que l'on précisera.

Soit $\mathcal B$ une base de $\mathbf R^n$ adaptée à

$$\mathbf{R}^{n} = E_{u}\left(\lambda_{1}\right) \oplus \cdots \oplus E_{u}\left(\lambda_{n}\right)$$

La question précédente montre que $B \in \ker \varphi_A$ si et seulement si la matrice de v dans la base \mathcal{B} est diagonale par blocs, du type

$$\mathcal{M}_{\mathcal{B}}(v) = \begin{pmatrix} M_1 & & & & \\ & M_2 & & & (O) & \\ & & \ddots & & \\ & & (O) & & \ddots & \\ & & & & M_p \end{pmatrix}$$

où chaque M_i est une matrice de $\mathcal{M}_{m_i}(\mathbf{R})$ (c'est la matrice dans une base extraite de \mathcal{B} de l'endomorphisme induit par v sur $E_u(\lambda_i)$).

(c) Préciser la dimension de $\ker \varphi_A$.

L'application

$$w \longmapsto \mathcal{M}_{\mathcal{B}}(w)$$

est un isomorphisme de $\mathcal{L}(\mathbf{R}^n)$ sur $\mathcal{M}_n(\mathbf{R})$. L'application

$$(M_1, \dots M_p) \longmapsto \begin{pmatrix} M_1 & & & & \\ & M_2 & & & (O) & \\ & & \ddots & & & \\ & & (O) & & \ddots & \\ & & & & M_p \end{pmatrix}$$

est un isomorphisme de $\mathcal{M}_{m_1}(\mathbf{R}) \times \cdots \times \mathcal{M}_{m_p}(\mathbf{R})$ sur l'espace des matrices du type décrit en (b). Et

$$\dim \left(\mathcal{M}_{m_1}(\mathbf{R}) \times \cdots \times \mathcal{M}_{m_n}(\mathbf{R}) \right) = m_1 + \cdots + m_p$$

On en tire
$$\dim \left(\operatorname{Ker}(\varphi_A) \right) = \sum_{k=1}^p \left[\dim \left(E_u(\lambda_k) \right) \right]^2$$

(d) Lorsque n = 7, donner toutes les valeurs possibles pour cette dimension en envisageant les différentes valeurs possibles de p et des m_k (on ne demande pas de justification).

On notera $d = \dim (\operatorname{Ker}(\varphi_A)).$

Les dimensions m_k sont évidemment données à permutation près.

$$p = 7 : m_1 = \dots = m_7 = 1, \lfloor d = 7 \rfloor$$

$$p=6: m_1=2, m_2=\ldots=\overline{m_6=1, d=9}$$

$$p = 5 : m_1 = 3, m_2 = \ldots = m_5 = 1, d = 13$$

$$p = 5 : m_1 = m_2 = 2, m_3 = \ldots = m_5 = 1, d = 11$$

$$p = 4 : m_1 = 4, m_2 = m_3 = m_4 = 1, d = 19$$

$$p = 4 : m_1 = 3, m_2 = 2, m_3 = m_4 = 1, d = 15$$

$$p=4: m_1=m_2=m_3=2, m_4=1, \boxed{d=13}$$

$$p = 3 : m_1 = 5, m_2 = m_3 = 1, \boxed{d = 27}$$

$$p = 3 : m_1 = 4, m_2 = 2, m_3 = 1, \boxed{d = 21}$$

$$p = 3 : m_1 = 3 = m_2 = 3, m_3 = 1, d = 19$$

$$p = 3 : m_1 = 3, m_2 = m_3 = 2, \lfloor d = 17 \rfloor$$

$$p=2: m_1=6, m_2=1, d=37$$

$$p=2: m_1=5, m_2=2, d=29$$

$$p=2: m_1=4, \underline{m_2=3, d=25}$$

$$p = 1 : m_1 = 7, \ d = 49$$

Ordonnées, les dimensions possibles sont 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 37, 49

Partie IV. Étude des vecteurs propres de φ_A associés à une valeur propre non nulle

Dans cette partie, α est une valeur propre non nulle de φ_A et B un vecteur propre associé $(B \in \mathcal{M}_n(\mathbf{R}), B \neq 0)$. On note π_B le polynôme minimal de B et d le degré de π_B .

12. Démontrer que, pour tout $k \in \mathbb{N}$, $\varphi_A(B^k) = \alpha k B^k$.

Par récurrence sur $k: \varphi_A(I_n) = 0$. Et si $\varphi_A(B^k) = \alpha k B^k$, alors

$$\varphi_A(B^{k+1}) = AB^{k+1} - B^{k+1}A$$

= $(AB^k - B^kA)B + B^kAB - B^{k+1}A$

(l'astuce est assez naturelle, car on veut faire apparaître $\varphi_A(B^k)$). Donc

$$\varphi_A(B^{k+1}) = \alpha k B^k + B^k \alpha A = \alpha (k+1) B^{k+1}$$

ce qui donne bien, par récurrence,

$$\forall k \in \mathbf{N} \qquad \varphi_A(B^k) = \alpha k B^k$$

13. Soit $P \in \mathbf{R}[X]$. Exprimer $\varphi_A(P(B))$ en fonction de α , B et P'(B).

Pour
$$P = X^k$$
,

$$\phi_A(P(B)) = \alpha B P'(B)$$

Les applications $P \longmapsto \phi_A(P(B))$ et $P \longmapsto \alpha B P'(B)$) sont linéaires sur $\mathbf{R}[X]$ et coïncident sur la base canonique, donc sont égales.

$$\forall P \in \mathbf{K}[X] \qquad \varphi_A(P(B)) = \alpha B P'(B)$$

14. Démontrer que le polynôme $X\pi'_B - d\pi_B$ est le polynôme nul $(\pi'_B$ étant le polynôme dérivé du polynôme minimal de la matrice B).

Appliquant à π_B ce qui précède, on obtient

$$\alpha B \pi_B'(B) = 0$$

Donc, comme $\alpha \neq 0$, $X\pi_B'$ est annulateur de B, donc divisible par π_B . Mais $\deg(X\pi_B') = \deg(\pi_B) = d$, donc $X\pi_B'$ et π_B sont associés. En comparant leurs coefficients dominants, on obtient bien $X\pi_B' - d\pi_B = 0$.

15. En déduire que $B^d = 0$.

Ecrivant $\pi_B = \sum_{j=0}^d \alpha_j X^j$, on a $X \pi'_B = \sum_{j=0}^d j \alpha_j X^j$. En identifiant les composantes dans la base canonique, pour tout j,

$$j\alpha_j = d\alpha_j$$

et donc, si $j < d, \, \alpha_j = 0$. Donc $\pi_B = X^d$ et π_B est annulateur de $B \dots$ FIN.